M E M O R A N D U M

TO:	Bob Farley, PE
	Project Management Coordinator
	Division of Highway Design
FROM:	Bart Asher, PE, PLS
	Geotechnical Branch Manager
	Division of Structural Design
BY:	Christian Wallover, PG
	Geotechnical Branch
DATE:	March 9, 2012
SUBJECT:	Jefferson County
	FD52 056 0264 021-023 D
	I-264
	Station 500+50 to 520+00
	Item No. 5-804.00
	MARS No. 8556401D

An abbreviated geotechnical engineering report has been completed for the subject project. Terracon (formerly H.C. Nutting Co.) completed the drilling and sampling. Testing and analyses were performed by the Geotechnical Branch. The purpose of the investigation was to define the subsurface conditions. Reduced size geotechnical symbol, geotechnical notes, soil profile and cut stability sheets are attached. The CADD input for these sheets, in DGN format, is being e-mailed to the District for incorporation into the roadway plans.

Geotechnical Engineering Roadway Report

The project is located within the Jeffersonville Quadrangle, East Bound exit ramp for I-264 and US 42 interchange. Geologic mapping indicates bedrock is part of the Beechwood Limestone Member of the Sellersburg Limestone Formation. There were no sinkholes or other karst features found during a field review; however the Beechwood Limestone Member is susceptible to solution, creating shallow sinkholes and caves along fractures. If sinkholes are encountered during construction, please contact this office for mitigation procedures.

Bedrock was encountered below the cut slope. Therefore, select rock quantities were not required and no rock will be available from roadway excavation for construction purposes.

Cut stability analyses were performed at station 511+50 using the maximum slope steepness of 2H:1V. The analyses did not identify any expected stability problems and the required factors of safety for roadway cuts in soil were met. The results of these analyses are shown on the attached cut stability sheet.

Bob Farley Item No.-05-804.00 March 9, 2012 Page 2 of 3

Testing indicated that natural moisture contents exceeded optimum moisture in some areas of the project. Subgrade problems may occur in some areas where the template is in a shallow fill or in a cut condition. Therefore, a minimum of one foot working platform consisting of Kentucky Coarse Aggregate # 2's, 3's or 23's wrapped with Geotextile Fabric, will be required in the areas where subgrade problems are encountered. The actual thickness and locations will be determined by the Engineer on construction and may depend on seasonal fluctuations in the water table. The working platform will be required directly beneath the roadway template and extending under the curb and gutter, where applicable. Wrapping the rock with fabric is cost effective because it prevents the soils or DGA from filtrating into these coarse aggregates. The working platform may also serve as a drainage blanket by placing short sections of perforated drain pipe (4 ft.) into the bottom of the granular material. The drainpipe should be located at the drop inlets, where applicable. **For quantity estimating purposes only**, a one-foot working platform shall be calculated for 500 feet of roadway.

GEOTECHNICAL RECOMMENDATIONS:

- 1.) In accordance with Section 206 of the current Standard Specifications, the moisture content of embankment material shall not vary from the optimum moisture content as determined by the current version of KM 64-511 by more than +2 percent or less than -2 percent. This moisture content requirement shall have equal weight with the density requirement when determining the acceptability of embankment construction. Refer to the Family of Curves for moisture/density correlation.
- **2.**) All soils, whether from roadway or borrow, may require manipulation to obtain proper moisture content prior to compaction. Direct payment shall not be permitted for rehandling, hauling, stockpiling, and/or manipulating soils.
- **3.**) Excavation of surface ditches and channel changes adjacent to embankment areas shall be performed prior to the placement of the adjacent embankments. The material excavated for the channel changes and surface ditches is suitable for embankment construction if dried to proper moisture content in accordance with Section 206 of the current Standard Specifications.
- **4.**) The Contractor is responsible for conducting any operations necessary to excavate the cut areas to the required typical section. These operations shall be incidental to Roadway Excavation or Embankment-in-Place, and no additional compensation shall be made for this work.
- **5.**) The Contractor shall construct foundation embankment benches as indicated on the plans and/or as directed by the Engineer, prior to placement of embankments in areas requiring such benches.

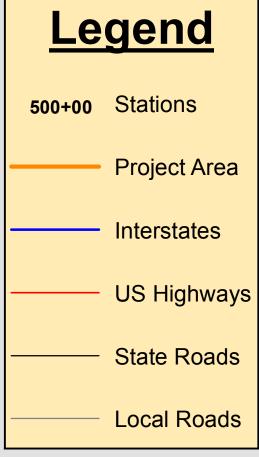
Bob Farley Item No.-05-804.00 March 9, 2012 Page 3 of 3

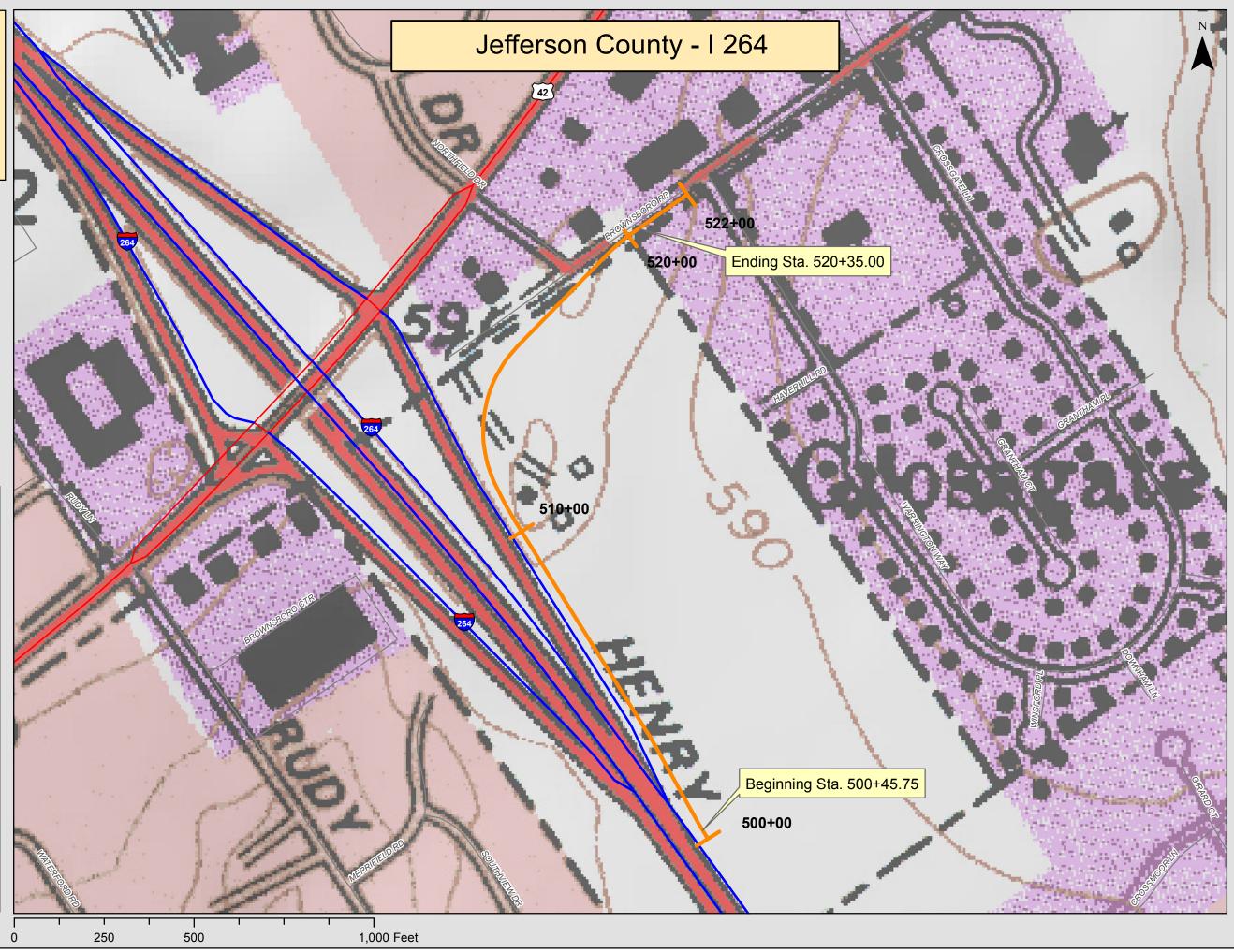
6.) Perforated pipe for subgrade drainage shall be installed or extended in vertical sags in accordance with RDP-005 at the following approximate location and/or where designated by the Engineer.

MAINLINE Station 508+40 Station 511+85

- 7.) Borrow material, if required for subgrade, shall meet the minimum CBR value of 4.
- **8.**) The existing subgrade is anticipated to be wet and soft in areas where the roadway template is in a shallow cut or fill. Therefore, a working platform will be required in these areas consisting of Kentucky Coarse Aggregate No. 2, 3 or 23 in accordance with the current edition of Section 805 of the Standard Specifications for Road and Bridge Construction. The working platform shall be wrapped with Geotextile Fabric, Type IV, in accordance with Sections 214 & 843 of the Standard Specifications. The actual locations and thickness shall be determined by the Engineer during construction and may depend on seasonal fluctuations in the water table. For the purpose of calculating quantities, assume 500 linear feet of roadway for this treatment.

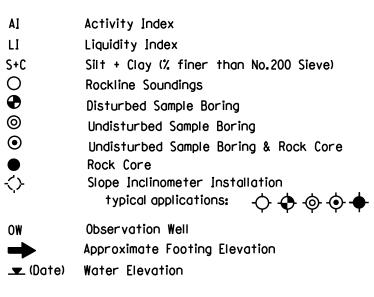
DESIGN RECOMMENDATIONS:


- **1.**) The project should be designed for a 2-foot subgrade using a CBR design value of 4.0.
- **2.**) An average soil shrinkage value of two (2) percent is estimated for this project. This value should be applied to the formula for calculating the Apparent Shrinkage as outlined in the Design Manual.
- cc: Division of Design (Plan Processing Section) TEBM for Pavement Design Division of Construction TEBM for Project Delivery & Preservation (District) TEBM for Project Development (District) Project Manager (District) HDR


Attachments:

Jefferson County I-264/US-42 Interchange Item No. 5-0804.00 Mars No. 8556401D

Improvements to I-264/US-42 Interchange



GEOTECHNICAL SYMBOLS

AASHTO	Class	ificat	ion of	f Soils	s and	Soil-A	ggreg	ate M	ixture	es				
General Classification		Granular Materials (35% or less passing 0.075 mm)								Silt-Clay Materials (More than 35% passing 0.075 mm)				
Group Classification	A	-1			A	-2		A-4			A-7			
	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-5 A-7-6			
Sieve Analysis, Percent Passing 2.00 mm (No. 10)	50 max													
0.425 mm (No. 40) 0.075 mm (No. 200)	30 max 15 max	50 max 25 max	51 min 10 max	 35 max	 35 max	 35 max	 35 max	 36 min	 36 min	 36 mîn	 36 mîn			
Characteristics of Fraction Passing 0.425 mm (No. 40) Liquid Limit		. <u>.</u>		40 max	41 min	40 max	41 min	40 max	41 min	40 max	41 min			
Plasticity Index	6	mox	N.P.	10 max	10 max	ll min	ll min	10 max	10 max	ll min	li min			

Unified Soil Classifications

	MAJOR DI	VISIONS	SYI	ABOL	NAME
			GW	• • • • • • • •	Well-graded gravels or gravel-sand mixtures, little or no fines.
		GRAVEL AND	GP	• • • • • • • • •	Poorly graded gravels or gravel-sand mixtures, little or no fines.
		GRAVELLY SOILS	GM		Silty gravels,gravel-sand-silt mixtures.
	COARSE		GC		Clayey gravels,gravel-sand-clay mixtures,
	GRAJNED SOJLS	SAND AND Sandy Soils	SW	* * * *	Well graded sands or gravelly sands, little or no fines.
			SP	+ + + + + + + +	Poorly graded sands or gravelly sands, little or no fines.
			SM		Silty sands, sand-silt mixtures.
			sc		Clayey sands, sand-clay mixtures.
UAIE		SILTS	ML		Inorganic silts and very fine sands,rock flour, silty or clayey fine sands or clayey silts with slight plasticity.
		AND CLAYS LL IS LESS	CL		Inorganic clays of low to medium plasticity, gravelly clays,sandy clays silty clays, lean clays.
	FINE GRAINED SOILS	THAN 50	ML-CL		Silty clay-silty clay with sand and or gravel, sandy silty clay, sandy silty clay with gravel, gravelly silty clay, gravelly silty clay with sand
-		SILTS AND CLAYS	МН		Inorganic silts,micaceous or diatomaceous fine sandy or silty soils,elastic silts.
		LL JS GREATER THAN 50	Сн		Inorganic clays of high plasticity,fat clays.

Unified Soil Classifications - Continued

			00000								
MAJOR DJ	VISIONS	SYN	IBOL	NAME							
		GP-GC		Poorly graded gravel with clay (or silty clay), poorly graded gravel with clay and sand (or silty clay & sand)							
	GRAVEL	GP-GM	11/1	Poorly graded gravel with silt, poorly graded gravel with silt and sand							
	AND GRAVELLY SOILS	GW-GC		Well graded gravel with clay (or silty clay), well graded gravel with clay and sand (or silty clay and sand)							
		GW-GM	11/1	Well graded gravel with silt, well graded gravel with silt and sand							
COARSE GRAINED SOILS		GC-GM		Silty clayey gravel, silty clayey gravel with sand							
		SW-SC		Well graded sand with clay (or silty clay), well graded sand with clay and gravel (or silty clay & gravel)							
	SAND	SP-SC		Poorly graded sand with clay (or silty clay), poorly graded sand with clay and gravel (or silty clay and gravel)							
	AND SANDY SOILS	SP-SM	8 8 8 8 8 8 8 8 8	Poorly graded sand with silt, poorly graded sand with silt and gravel							
		SC-SM		Silty clayey sand, silty clayey sand with gravel							
		SW-SM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Well graded sand with slit, well graded sand with slit and gravel							
UNCLAS		ОН		Organic (High Plasticity)							
WATERIAL		OL		Organic (Low Plasticity)							

ں ر

< v >^ < ^ < ^ v >

JEFFERSON	5-804.00	
COUNTY OF	ITEM NO.	SHEET NO.

LIMESTONE

TALUS, MINE WASTE, FILL MATERIAL, BOULDERS, & ETC.

SANDSTONE

DURABLE SHALE $(SDI \ge 95)$

NONDURABLE SHALE (SDI < 95)

GRANULAR EMBANKMENT . .

DOLOMITE

COAL

LIMESTONE (ARGILLACEOUS)

SLOPE PROTECTION

STRUCTURE GRANULAR BACKFILL

GEOTECHNICAL SYMBOL SHEET

GEOTECHNICAL NOTES

1.) In accordance with Section 206 of the current Standard Specifications, the moisture content of embankment material shall not vary from the optimum moisture content as determined by the current version of KM 64-511 by more than +2 percent or less than -2 percent. This moisture content requirement shall have equal weight with the density requirement when determining the acceptability of embankment construction. Refer to the Family of Curves for moisture/density correlation.

2.) All soils, whether from roadway or borrow, may require manipulation to obtain proper moisture content prior to compaction. Direct payment shall not be permitted for rehandling, hauling, stockpiling, and/or manipulating soils.

3.) Excavation of surface ditches and channel changes adjacent to embankment areas shall be performed prior to the placement of the adjacent embankments. The material excavated for the channel changes and surface ditches is suitable for embankment construction if dried to proper moisture content in accordance with Section 206 of the current Standard Specifications.

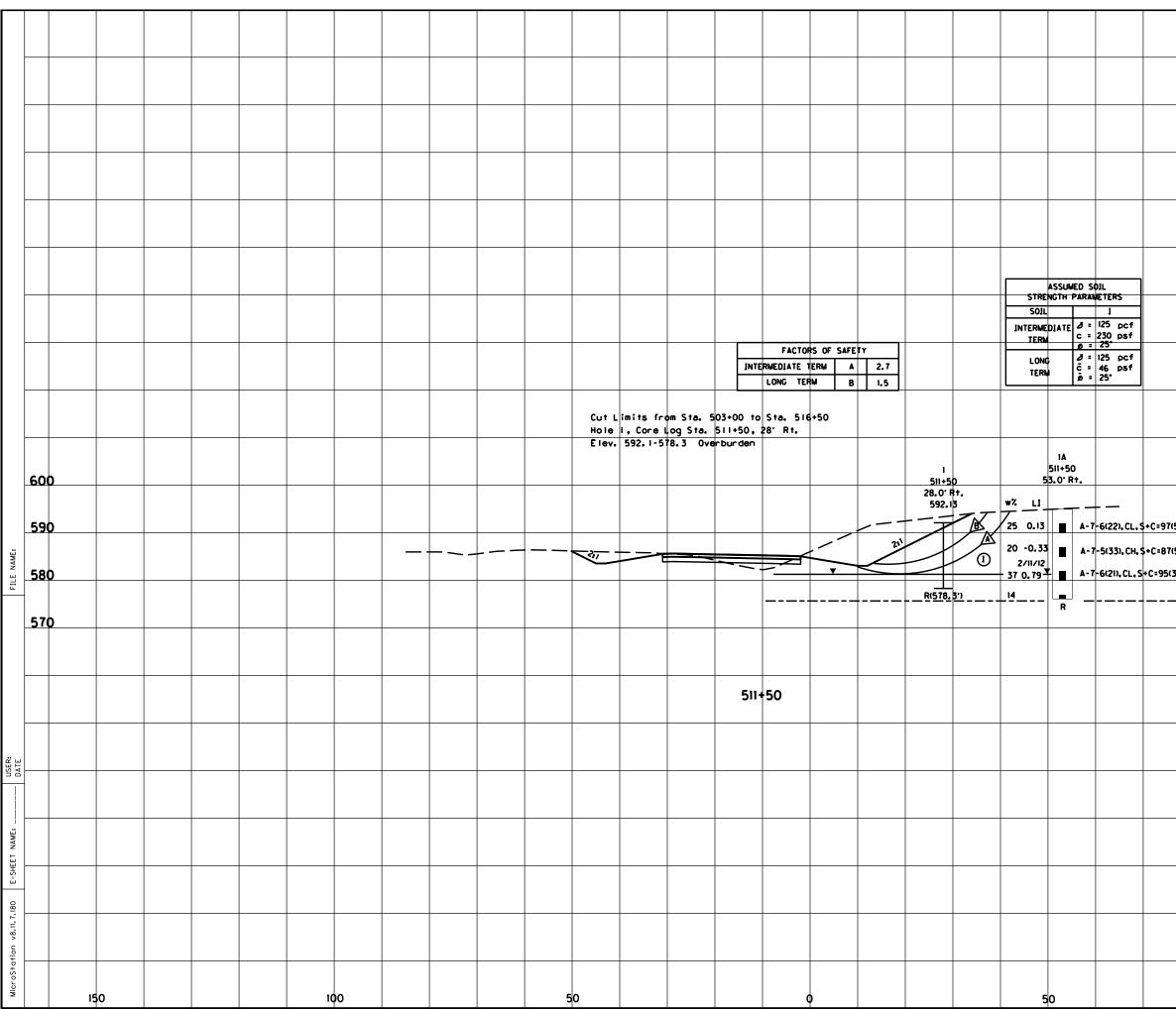
4.) The Contractor is responsible for conducting any operations necessary to excavate the cut areas to the required typical section. These operations shall be incidental to Roadway Excavation or Embankment-in-Place, and no additional compensation shall be made for this work.

5.) The Contractor shall construct foundation embankment benches as indicated on the plans and/or as directed by the Engineer, prior to placement of embankments in areas requiring such b

6.) Perforated pipe for subgrade drainage shall be installed or extended in vertical sags in accordance with RDP-005 at the following approximate location and/or where designated by the Engineer.

MAINLINE Station 508+40 Station 511+85

7.) Borrow material, if required for subgrade, shall meet the minimum CBR value of 4.


8.) The existing subgrade is anticipated to be wet and soft in areas where the roadway template in a shallow cut or fill. Therefore, a working platform will be required in these areas consisting of Kentucky Coarse Aggregate No. 2, 3 or 23 in accordance with the current edition of Section 805 of the Standard Specifications for Road and Bridge Construction. The working platform shall be wrapped with Geotextile Fabric, Type IV, in accordance with Sections 214 & 843 of the Standard Specifications. The actual locations and thickness shall be determined by the Engineer during construction and may depend on seasonal fluctuations in the water table. For the purpose of calculating quantities, assume 500 linear feet of roadway for this tre

ŀ	
benches.	
e is	
eatment.	Commonwealth of Kentucky DEPARTMENT OF HIGHWAYS COUNTY OF
	JEFFERSON
	PROJECT
	GEOTECHNICAL NOTES

|--|--|

	De encour Soil an based	tailed data ntered in d rock st on engine	and Sampling and interpr individual bor rata discript ering interpr ained at sele	retation of ings are sh tions and in retation of	subsurfac own on the dicated bou available s	e conditio soil prof undaries o subsurfoce	ile. re		and s distin or an wheth the D	dway and o hall be desi <u>ctly unders</u> y other ma er in numb epartment's	it regard to the frainage excavati gnated as Roodwa tood that any r terials on the pi rs, words, lette information and	ion shall be uncl by Excovation, <u>eference to ro</u> lans or cross se rs, or lines, is is not to be t	ossified t shall be <u>ck. earth</u> ctions solely for aken as									
	essari betwee The indica explor may v	ily reflect en borings e observed ted on the ation. The ary consid	the actual v and samples d water level soil profile ese water lev lerable with t	variation in is and/or s are as rec vels and/or time, accord	subsurface ubsurface corded at 1 subsurfac ding to the	e conditions conditions the time o e conditio prevoilin	ns f ns g		eithe the c not c and n when	rock, ear The b onditions to ive any guo o claim will the materia	classified excave th or any other idder must draw o be encountered rantee as to th be considered fo pis encountered	material involve his own conclus d. The Departme e accuracy of or additional com	d. Ions as to ant does the data pensation									
	on the Sel at the for in Geote	e duration lected roc e Division ispection r	or other fac of and meth k cores and af Structura request. Con n ch for avai l	hods used î ali applicabl al Design în htact the Di	n the explo e drill logs Frankfort ivision of S	oration pr , are stor and are a Structural	ogram. ed vailable Design,			lassificatio	h shown											
	L							•		REFI	R TO GEOTECHN	IICAL NOTE 6 F	OR STATIC	N 511+85								
20										REFER 1	O CUT STABILIT	Y FOR STATION	511+50			25			2			
10						REF	ER TO GEO	TECHNICAL	NOTE 6 F	OR STATIO	N 508+40				N	1.515+72. . 592.84		. 72	. V. I. 518+16. 22 Elev. 595. 28 P. V. T. 519+03.	IV. 593.96		
00		15,75 1									4	5 511+50		6 513+50	P. V. C. 514+72.5 Elev. 590.09	>∂ 0 7 515+50 5.0'Lt.	r. T. 516		518+50	10 519+50		
90		P. V. I. 500+4 Elev. 588.4			2 503+50 10.0' Rt. 584.97			3 506+50 22.0' Rt. 586.01			509+50 37.0' R†. 590.16	28.0' Rt. 592.13	~	20.0' Rt. 591.50	P.V.O	593.77			594.49	30.0'L+. 590.9	.] w%	
					304. 31				<u>~</u>	<u>()</u>	23	5		2	3	1 NR	25		NR	NR S	.02 17 6(9), CL, C=93(63+30	»
80					NR			NR	,		NR	NR 98 7	512+47,46 583.90	513+22.46 585.96 J					INTERSECTION OF		520+35.00 ·. 590.28	
70												P.V.C. 511+72. Elev. 584,42	P. V. 1. 512+	P. V. T. 513 Elev. 585.					IN1		P. V. T. Elev	
60												<u> </u>										
								SAMPLE NO				2	3	4			6	7	8]		
								STATJON OFFSET DEPTH		EL (- 3" + NO. 10		503+50 10.0' Rt. 0.0-6.0	0.0-8.0	37.0' R 0.0-13. 0	t. 28.0 0 0.0-	Rt. 20	.0-12.0 4	515+50 5.0'Lt. 0.0-9.0 0	518+50 10.0' Rt. 0.0-6.0 6			
								COMPOSITI OF TOTA Sample Liquid Li	L SILT CLAY	(- NO 10 + NO. (- 0.075 mm (- 0.002 mm)		9 54 37 43	5 59 36 44	4 63 33 37	4	2	4 53 39 42	3 68 29 35	7 52 35 36			
								PLASTIC L PLASTICIT ACTIVITY SPECIFIC	y index Index			18 25 0.67 2.74	18 26 <u>0.72</u> 2.68	20 17 0.52 2.53	0.	3 53	20 22 0.57 2.73	21 14 0.49 2.71	18 18 0.52 2.71			
								UNIFIED C	LASSIFICATION LASSIFICATION A BEARING RA RY DENSITY (C	10		A-7-6(23) CL 4 105	A-7-6(26 CL 8 104	5) A-6(17 CL 7 106	C		-7-6(21) CL 6 106	A-6(14) CL 7 107	A-6(15) CL 7 113	-		
								OPTIMUM	ioisture (2)		TURE-DENISITY TESTS	19 0	20	19 19 0	1	9	20	18 0	16 4			
																			SOIL	PROFIL	E I-264	

					COUNTY	OF	ITEM NO.	SHEET NO.
					JEFFERS	SON !	5-804.00	
								620
				16 16	37.6			610
	9			P.V.C. 49+2* Elev. 594.59 P.V.L.49+79, Elev. 595.36	<u>E.V.T. 50+29.76</u> Elev. 594.11			010
	Eiev. 590.91		9 48+40		5 <u>5</u>			
			4.0' Rt.	P.V.C. Elev. F.V.L. Elev.				600
		OU W% LI	593.07					
	0.76% ⁽	oo w. Li osf)	1.54%					590
		703 21 0.1		6 (12), CL, C=97(72+25				230
	PLACE 46+38-46 -1-46+63 46 Elev. 5500.82 		NR S+	0-9	C P. V. C. 50+ 75. 30 Elev. 592.97	8		
	946 + 3 90 - 8 96 + 8 96 + 8 96 + 8				· 23	591.		580
	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				<u>ר:</u> בופי	<u>P. V. T. 51+25.30</u> Elev. 591.88		
					പ്	1		570
	63.48							570
	590 590							
								560
				SOIL	PROFILE	KY 2	22	
80	٤C	04	15	3 0 3	89 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9		
08.062 46		765 700 48	65 92. 6 594.	500 50	5 60 5	0232	52+00	
401	UU 4/1	481	UU 431					
				SCALI	:; " = 10 [.] " = 100	HORIZ		
					100			
			Cor	nmon	wealt	1 of	Kenl	tucky
			DEP	PARTN	1ENT	OF	HIGH	WAÝS
					COUN	TY (DF	
					JEFFE	RSC	ON	
			PROJECT					
			NUMBERS:					
					SOIL P	ROFIL	E	

					COUNTY	OF	ITE	M NO.	SHE	ET NO.
					JEFFER	SON	5-80	04.00		
	<u> </u>				<u> </u>					
									- 6	500
97(51+4	6)								5	590
37(50+	37)									
5(38+5		•							5	580
	₹.									570
	Interpol	ated Base	of RDZ						-	010
				SCAI	.E: 1" = 1(1" = 1(р, нС 20,	VERT J	NTAL CAL		
									\neg	
									+	
			0						150	
			CU.	T STABL	LITY SE STA. 511		ON, 1	MAINL	INE	
					JIA, 31	- 30	,			